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“We see that the theory of probability is at bottom only common sense reduced to

calculation; it makes us appreciate with exactitude what reasonable minds feel by a

sort of instinct, often without being able to account for it... It is remarkable that this

science, which originated in the consideration of games of chance, should have

become the most important object of human knowledge.... The most important

questions of life are, for the most part, really only problems of probability.” So said

the famous French mathematician and astronomer (the “Newton of France”) Pierre-

Simon, Marquis de Laplace. Although many people believe that the famous marquis,

who was also one of the great contributors to the development of probability, might

have exaggerated somewhat, it is nevertheless true that probability theory has

become a tool of fundamental importance to nearly all scientists, engineers, medical

practitioners, jurists, and industrialists. In fact, the enlightened individual had learned

to ask not “Is it so?” but rather “What is the probability that it is so?”

This book is intended as an elementary introduction to the theory of probability for

students in mathematics, statistics, engineering, and the sciences (including
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computer science, biology, the social sciences, and management science) who

possess the prerequisite knowledge of elementary calculus. It attempts to present

not only the mathematics of probability theory, but also, through numerous examples,

the many diverse possible applications of this subject.

Chapter 1  presents the basic principles of combinatorial analysis, which are most

useful in computing probabilities.

Chapter 2  handles the axioms of probability theory and shows how they can be

applied to compute various probabilities of interest.

Chapter 3  deals with the extremely important subjects of conditional probability

and independence of events. By a series of examples, we illustrate how conditional

probabilities come into play not only when some partial information is available, but

also as a tool to enable us to compute probabilities more easily, even when no partial

information is present. This extremely important technique of obtaining probabilities

by “conditioning” reappears in Chapter 7 , where we use it to obtain expectations.

The concept of random variables is introduced in Chapters 4 , 5 , and 6 .

Discrete random variables are dealt with in Chapter 4 , continuous random

variables in Chapter 5 , and jointly distributed random variables in Chapter 6 .

The important concepts of the expected value and the variance of a random variable

are introduced in Chapters 4  and 5 , and these quantities are then determined

for many of the common types of random variables.

Additional properties of the expected value are considered in Chapter 7 . Many

examples illustrating the usefulness of the result that the expected value of a sum of

random variables is equal to the sum of their expected values are presented.

Sections on conditional expectation, including its use in prediction, and on moment-

generating functions are contained in this chapter. In addition, the final section

introduces the multivariate normal distribution and presents a simple proof

concerning the joint distribution of the sample mean and sample variance of a

sample from a normal distribution.

Chapter 8  presents the major theoretical results of probability theory. In particular,

we prove the strong law of large numbers and the central limit theorem. Our proof of

the strong law is a relatively simple one that assumes that the random variables have

a finite fourth moment, and our proof of the central limit theorem assumes Levy’s

continuity theorem. This chapter also presents such probability inequalities as

Markov’s inequality, Chebyshev’s inequality, and Chernoff bounds. The final section
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of Chapter 8  gives a bound on the error involved when a probability concerning a

sum of independent Bernoulli random variables is approximated by the

corresponding probability of a Poisson random variable having the same expected

value.

Chapter 9  presents some additional topics, such as Markov chains, the Poisson

process, and an introduction to information and coding theory, and Chapter 10

considers simulation.

As in the previous edition, three sets of exercises are given at the end of each

chapter. They are designated as Problems, Theoretical Exercises, and Self-Test

Problems and Exercises. This last set of exercises, for which complete solutions

appear in Solutions to Self-Test Problems and Exercises, is designed to help

students test their comprehension and study for exams.

The tenth edition continues the evolution and fine tuning of the text. Aside from a

multitude of small changes made to increase the clarity of the text, the new edition

includes many new and updated problems, exercises, and text material chosen both

for inherent interest and for their use in building student intuition about probability.

Illustrative of these goals are Examples 4n of Chapter 3 , which deals with

computing NCAA basketball tournament win probabilities, and Example 5b of

Chapter 4 , which introduces the friendship paradox. There is also new material

on the Pareto distribution (introduced in Section 5.6.5 ), on Poisson limit results

(in Section 8.5 ), and on the Lorenz curve (in Section 8.7 ).

I would like to thank the following people who have graciously taken the time to

contact me with comments for improving the text: Amir Ardestani, Polytechnic

University of Teheran; Joe Blitzstein, Harvard University; Peter Nuesch, University of

Lausaunne; Joseph Mitchell, SUNY, Stony Brook; Alan Chambless, actuary; Robert

Kriner; Israel David, Ben-Gurion University; T. Lim, George Mason University; Wei

Chen, Rutgers; D. Monrad, University of Illinois; W. Rosenberger, George Mason

University; E. Ionides, University of Michigan; J. Corvino, Lafayette College; T.

Seppalainen, University of Wisconsin; Jack Goldberg; University of Michigan; Sunil

Dhar, New Jersey Institute of Technology; Vladislav Kargin, Stanford University;

Marlene Miller; Ahmad Parsian; and Fritz Scholz, University of Washington.

I would also like to especially thank the reviewers of the ninth and tenth editions:
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1.1 Introduction

1.2 The Basic Principle of Counting

1.3 Permutations

1.4 Combinations

1.5 Multinomial Coefficients

1.6 The Number of Integer Solutions of Equations

Here is a typical problem of interest involving probability: A communication system is

to consist of  seemingly identical antennas that are to be lined up in a linear order.𝑛
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The resulting system will then be able to receive all incoming signals and will be

called functional as long as no two consecutive antennas are defective. If it turns out

that exactly  of the  antennas are defective, what is the probability that the

resulting system will be functional? For instance, in the special case where  and

 there are 6 possible system configurations, namely,

where 1 means that the antenna is working and 0 that it is defective. Because the

resulting system will be functional in the first 3 arrangements and not functional in the

remaining 3, it seems reasonable to take  as the desired probability. In the case

of general  and  we could compute the probability that the system is functional in

a similar fashion. That is, we could count the number of configurations that result in

the system’s being functional and then divide by the total number of all possible

configurations.

From the preceding discussion, we see that it would be useful to have an effective

method for counting the number of ways that things can occur. In fact, many

problems in probability theory can be solved simply by counting the number of

different ways that a certain event can occur. The mathematical theory of counting is

formally known as combinatorial analysis.

The basic principle of counting will be fundamental to all our work. Loosely put, it

states that if one experiment can result in any of  possible outcomes and if another

experiment can result in any of  possible outcomes, then there are mn possible

outcomes of the two experiments.

The basic principle of counting

Suppose that two experiments are to be performed. Then if experiment 1 can

result in any one of  possible outcomes and if, for each outcome of

experiment 1, there are  possible outcomes of experiment 2, then together

there are mn possible outcomes of the two experiments.

Proof of the Basic Principle: The basic principle may be proven by enumerating all

the possible outcomes of the two experiments; that is,

𝑚 𝑛

𝑛 4

𝑚 2,

0 1 1 0

0 1 0 1

1 0 1 0

0 0 1 1

1 0 0 1

1 1 0 0

3
6

1
2

𝑛 𝑚,

𝑚

𝑛

𝑚

𝑛
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where we say that the outcome is ( ) if experiment 1 results in its th possible

outcome and experiment 2 then results in its th possible outcome. Hence, the set of

possible outcomes consists of  rows, each containing  elements. This proves the

result.

Example 2a

A small community consists of 10 women, each of whom has 3 children. If one

woman and one of her children are to be chosen as mother and child of the year,

how many different choices are possible?

Solution

By regarding the choice of the woman as the outcome of the first experiment and

the subsequent choice of one of her children as the outcome of the second

experiment, we see from the basic principle that there are  possible

choices.

When there are more than two experiments to be performed, the basic principle can

be generalized.

The generalized basic principle of counting

If  experiments that are to be performed are such that the first one may result

in any of  possible outcomes; and if, for each of these  possible outcomes,

there are  possible outcomes of the second experiment; and if, for each of

the possible outcomes of the first two experiments, there are  possible

outcomes of the third experiment; and if, then there is a total of 

possible outcomes of the  experiments.

Example 2b

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors,

and 2 seniors. A subcommittee of 4, consisting of 1 person from each class, is to

be chosen. How many different subcommittees are possible?

Solution

We may regard the choice of a subcommittee as the combined outcome of the

four separate experiments of choosing a single representative from each of the

classes. It then follows from the generalized version of the basic principle that

1, 1 , 1, 2 , . . ., 1,𝑛

2, 1 , 2, 2 , . . ., 2,𝑛

⋮

𝑚, 1 , 𝑚, 2 , . . ., 𝑚,𝑛

𝑖, 𝑗 𝑖

𝑗

𝑚 𝑛

10 3 30

𝑟

𝑛 𝑛

𝑛

𝑛

𝑛 ⋅ 𝑛 ⋯𝑛

𝑟
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there are  possible subcommittees.

Example 2c

How many different 7-place license plates are possible if the first 3 places are to

be occupied by letters and the final 4 by numbers?

Solution

By the generalized version of the basic principle, the answer is

Example 2d

How many functions defined on  points are possible if each functional value is

either 0 or 1?

Solution

Let the points be  Since  must be either 0 or 1 for each 

it follows that there are  possible functions.

Example 2e

In Example 2c , how many license plates would be possible if repetition

among letters or numbers were prohibited?

Solution

In this case, there would be  possible

license plates.

How many different ordered arrangements of the letters  and  are possible? By

direct enumeration we see that there are 6, namely, abc, acb, bac, bca, cab, and

cba. Each arrangement is known as a permutation. Thus, there are 6 possible

permutations of a set of 3 objects. This result could also have been obtained from

the basic principle, since the first object in the permutation can be any of the 3, the

second object in the permutation can then be chosen from any of the remaining 2,

and the third object in the permutation is then the remaining 1. Thus, there are

 possible permutations.

Suppose now that we have  objects. Reasoning similar to that we have just

used for the 3 letters then shows that there are

3 4 5 2 120

26 ⋅ 26 ⋅ 26 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10 175,760,000.

𝑛

1,2, . . . ,𝑛. 𝑓 𝑖 𝑖 1,2, . . . ,𝑛,

2

26 ⋅ 25 ⋅ 24 ⋅ 10 ⋅ 9 ⋅ 8 ⋅ 7 78,624,000

𝑎, 𝑏, 𝑐

3 ⋅ 2 ⋅ 1 6

𝑛
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different permutations of the  objects.

Whereas  (read as “n factorial”) is defined to equal  when  is a positive

integer, it is convenient to define  to equal 

Example 3a

How many different batting orders are possible for a baseball team consisting of

9 players?

Solution

There are  possible batting orders.

Example 3b

A class in probability theory consists of 6 men and 4 women. An examination is

given, and the students are ranked according to their performance. Assume that

no two students obtain the same score.

a. How many different rankings are possible?

b. If the men are ranked just among themselves and the women just among

themselves, how many different rankings are possible?

Solution

a. (a) Because each ranking corresponds to a particular ordered

arrangement of the 10 people, the answer to this part is 

b. (b) Since there are 6! possible rankings of the men among themselves

and 4! possible rankings of the women among themselves, it follows from

the basic principle that there are  possible

rankings in this case.

Example 3c

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 are

mathematics books, 3 are chemistry books, 2 are history books, and 1 is a

language book. Ms. Jones wants to arrange her books so that all the books

dealing with the same subject are together on the shelf. How many different

arrangements are possible?

Solution

There are 4! 3! 2! 1! arrangements such that the mathematics books are first in

𝑛 𝑛 1 𝑛 2 ⋯3 ⋅ 2 ⋅ 1 𝑛!

𝑛

𝑛! 1 ⋅ 2⋯𝑛 𝑛

0! 1.

9! 362,880

10! 3,628,800.

6! 4! 720 24 17,280
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line, then the chemistry books, then the history books, and then the language

book. Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1!

possible arrangements. Hence, as there are 4! possible orderings of the subjects,

the desired answer is 

We shall now determine the number of permutations of a set of  objects when

certain of the objects are indistinguishable from one another. To set this situation

straight in our minds, consider the following example.

Example 3d

How many different letter arrangements can be formed from the letters 

Solution

We first note that there are 6! permutations of the letters  when the

 and the  are distinguished from one another. However, consider any one

of these permutations for instance,  If we now permute the ’s

among themselves and the ’s among themselves, then the resultant

arrangement would still be of the form  That is, all 3! 2! permutations

are of the form  Hence, there are  letter

arrangements of the letters 

In general, the same reasoning as that used in Example 3d  shows that

there are

different permutations of  objects, of which  are alike,  are alike, 

are alike.

Example 3e

A chess tournament has 10 competitors, of which 4 are Russian, 3 are from the

United States, 2 are from Great Britain, and 1 is from Brazil. If the tournament

result lists just the nationalities of the players in the order in which they placed,

how many outcomes are possible?

4! 4! 3! 2! 1! 6912.

𝑛

𝑃𝐸𝑃𝑃𝐸𝑅?

𝑃 𝐸 𝑃 𝑃 𝐸 𝑅

3𝑃's 2𝐸's

𝑃 𝑃 𝐸 𝑃 𝐸 𝑅. 𝑃

𝐸

𝑃𝑃𝐸𝑃𝐸𝑅.

𝑃 𝑃 𝐸 𝑃 𝐸 𝑅 𝑃 𝑃 𝐸 𝑃 𝐸 𝑅

𝑃 𝑃 𝐸 𝑃 𝐸 𝑅 𝑃 𝑃 𝐸 𝑃 𝐸 𝑅

𝑃 𝑃 𝐸 𝑃 𝐸 𝑅 𝑃 𝑃 𝐸 𝑃 𝐸 𝑅

𝑃 𝑃 𝐸 𝑃 𝐸 𝑅 𝑃 𝑃 𝐸 𝑃 𝐸 𝑅

𝑃 𝑃 𝐸 𝑃 𝐸 𝑅 𝑃 𝑃 𝐸 𝑃 𝐸 𝑅

𝑃 𝑃 𝐸 𝑃 𝐸 𝑅 𝑃 𝑃 𝐸 𝑃 𝐸 𝑅

𝑃𝑃𝐸𝑃𝐸𝑅. 6!/ 3! 2! 60 possible

𝑃𝐸𝑃𝑃𝐸𝑅.

𝑛!
𝑛 ! 𝑛 ! ⋯ 𝑛 !

𝑛 𝑛 𝑛 . . . ,𝑛
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Solution

There are

possible outcomes.

Example 3f

How many different signals, each consisting of 9 flags hung in a line, can be

made from a set of 4 white flags, 3 red flags, and 2 blue flags if all flags of the

same color are identical?

Solution

There are

different signals.

We are often interested in determining the number of different groups of  objects

that could be formed from a total of  objects. For instance, how many different

groups of 3 could be selected from the 5 items  and  To answer this

question, reason as follows: Since there are 5 ways to select the initial item, 4 ways

to then select the next item, and 3 ways to select the final item, there are thus 

ways of selecting the group of 3 when the order in which the items are selected is

relevant. However, since every group of 3–say, the group consisting of items 

and  will be counted 6 times (that is, all of the permutations ABC, ACB, BAC, BCA,

CAB, and CBA will be counted when the order of selection is relevant), it follows that

the total number of groups that can be formed is

In general, as  represents the number of different ways that a

group of  items could be selected from  items when the order of selection is

relevant, and as each group of  items will be counted ! times in this count, it follows

that the number of different groups of  items that could be formed from a set of 

10!
4! 3! 2! 1!

12,600

9!
4! 3! 2!

1260

𝑟

𝑛

𝐴, 𝐵, 𝐶, 𝐷, 𝐸?

5 ⋅ 4 ⋅ 3

𝐴, 𝐵,

𝐶

5 ⋅ 4 ⋅ 3
3 ⋅ 2 ⋅ 1

10

𝑛 𝑛 1 ⋯ 𝑛 𝑟 1

𝑟 𝑛

𝑟 𝑟

𝑟 𝑛
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items is

Notation and terminology

We define  for  by

and say that  (read as “  choose “) represents the number of possible

combinations of  objects taken  at a time.

Thus,  represents the number of different groups of size  that could be selected

from a set of  objects when the order of selection is not considered relevant.

Equivalently,  is the number of subsets of size  that can be chosen from a set of

size  Using that  note that  which is consistent with

the preceding interpretation because in a set of size  there is exactly  subset of

size  (namely, the entire set), and exactly one subset of size  (namely the empty

set). A useful convention is to define  equal to  when either  or 

Example 4a

A committee of 3 is to be formed from a group of 20 people. How many different

committees are possible?

Solution

There are  possible committees.

Example 4b

From a group of 5 women and 7 men, how many different committees consisting

of 2 women and 3 men can be formed? What if 2 of the men are feuding and

refuse to serve on the committee together?

Solution

𝑛 𝑛 1 ⋯ 𝑛 𝑟 1
𝑟!

𝑛!
𝑛 𝑟 ! 𝑟!

𝑛

𝑟
, 𝑟 𝑛,

𝑛

𝑟

𝑛!
𝑛 𝑟 ! 𝑟!

𝑛

𝑟
𝑛 𝑟

𝑛 𝑟
𝑛

𝑟
𝑟

𝑛

𝑛

𝑟
𝑟

𝑛. 0! 1,
𝑛

𝑛

𝑛

0

𝑛!
0!𝑛!

1,

𝑛 1

𝑛 0
𝑛

𝑟
0 𝑟 𝑛 𝑟 0.

20

3

20 ⋅ 19 ⋅ 18
3 ⋅ 2 ⋅ 1

1140
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As there are  possible groups of 2 women, and  possible groups of 3

men, it follows from the basic principle that there are 

 possible committees consisting of 2 women and 3 men.

Now suppose that  of the men refuse to serve together. Because a total of

 out of the  possible groups of 3 men contain both of the

feuding men, it follows that there are  groups that do not contain both

of the feuding men. Because there are still  ways to choose the 2

women, there are  possible committees in this case.

Example 4c

Consider a set of  antennas of which  are defective and  are functional

and assume that all of the defectives and all of the functionals are considered

indistinguishable. How many linear orderings are there in which no two

defectives are consecutive?

Solution

Imagine that the  functional antennas are lined up among themselves. Now,

if no two defectives are to be consecutive, then the spaces between the

functional antennas must each contain at most one defective antenna. That is, in

the  possible positions–represented in Figure 1.1  by carets–

between the  functional antennas, we must select  of these in which to

put the defective antennas. Hence, there are  possible orderings in

which there is at least one functional antenna between any two defective ones.

Figure 1.1 No consecutive defectives.

The figure shows No consecutive defectives

A useful combinatorial identity, known as Pascal’s identity, is

Equation (4.1)  may be proved analytically or by the following combinatorial

argument: Consider a group of  objects, and fix attention on some particular one of

5

2

7

3

5

2

7

3

5 ⋅ 4
2 ⋅ 1

.

7 ⋅ 6 ⋅ 5
3 ⋅ 2 ⋅ 1

350

2
2

2

5

1
5

7

3
35

35 5 30
5

2
10

30 ⋅ 10 300

𝑛 𝑚 𝑛 𝑚

𝑛 𝑚

𝑛 𝑚 1

𝑛 𝑚 𝑚
𝑛 𝑚 1

𝑚

𝑛

𝑟

𝑛 1

𝑟 1

𝑛 1

𝑟
 1 𝑟 𝑛

(4.1)

𝑛
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these objects–call it object 1. Now, there are  groups of size  that contain

object 1 (since each such group is formed by selecting  from the remaining

 objects). Also, there are  groups of size  that do not contain object 1.

As there is a total of  groups of size Equation (4.1)  follows.

The values  are often referred to as binomial coefficients because of their

prominence in the binomial theorem.

The binomial theorem

We shall present two proofs of the binomial theorem. The first is a proof by

mathematical induction, and the second is a proof based on combinatorial

considerations.

Proof of the Binomial Theorem by Induction: When Equation (4.2)

reduces to

Assume Equation (4.2)  for  Now,

Letting  in the first sum and  in the second sum, we find that

𝑛 1

𝑟 1
𝑟

𝑟 1

𝑛 1
𝑛 1

𝑟
𝑟

𝑛

𝑟
𝑟,

𝑛

𝑟

𝑥 𝑦
𝑛

𝑘
 𝑥 𝑦

(4.2)

𝑛 1,

𝑥 𝑦
1

0
 𝑥 𝑦

1

1
 𝑥 𝑦 𝑦 𝑥

𝑛 1.

𝑥 𝑦 𝑥 𝑦 𝑥 𝑦

𝑥 𝑦
𝑛 1

𝑘
 𝑥 𝑦

𝑛 1

𝑘
𝑥 𝑦

𝑛 1

𝑘
 𝑥 𝑦

𝑖 𝑘 1 𝑖 𝑘
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where the next-to-last equality follows by Equation (4.1) . By induction, the

theorem is now proved.

Combinatorial Proof of the Binomial Theorem: Consider the product

Its expansion consists of the sum of  terms, each term being the product of 

factors. Furthermore, each of the  terms in the sum will contain as a factor either 

or  for each  For example,

Now, how many of the  terms in the sum will have  of the ’s and  of the

’s as factors? As each term consisting of  of the ’s and  of the ’s

corresponds to a choice of a group of  from the  values  there are 

such terms. Thus, letting  we see that

Example 4d

Expand 

Solution

𝑥 𝑦
𝑛 1

𝑖 1
 𝑥 𝑦

𝑛 1

𝑖
 𝑥 𝑦

𝑛 1

𝑖 1
 𝑥 𝑦 𝑥 𝑦

𝑛 1

𝑖
 𝑥 𝑦

𝑥
𝑛 1

𝑖 1

𝑛 1

𝑖
 𝑥 𝑦 𝑦

𝑥
𝑛

𝑖
 𝑥 𝑦 𝑦

𝑛

𝑖
 𝑥 𝑦

𝑥 𝑦 𝑥 𝑦 ⋯ 𝑥 𝑦

2 𝑛

2 𝑥

𝑦 𝑖 1, 2, . . . ,𝑛.

𝑥 𝑦 𝑥 𝑦 𝑥 𝑥 𝑥 𝑦 𝑦 𝑥 𝑦 𝑦

2 𝑘 𝑥 𝑛 𝑘

𝑦 𝑘 𝑥 𝑛 𝑘 𝑦

𝑘 𝑛 𝑥 ,  𝑥 …,  𝑥 ,
𝑛

𝑘

𝑥 𝑥, 𝑦 𝑦, 𝑖 1, . . . ,𝑛,

𝑥 𝑦
𝑛

𝑘
 𝑥 𝑦

𝑥 𝑦 .
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Example 4e

How many subsets are there of a set consisting of  elements?

Solution

Since there are  subsets of size  the desired answer is

This result could also have been obtained by assigning either the number 0 or

the number 1 to each element in the set. To each assignment of numbers, there

corresponds, in a one-to-one fashion, a subset, namely, that subset consisting of

all elements that were assigned the value 1. As there are  possible

assignments, the result follows.

Note that we have included the set consisting of 0 elements (that is, the null set)

as a subset of the original set. Hence, the number of subsets that contain at least

1 element is 

In this section, we consider the following problem: A set of  distinct items is to be

divided into  distinct groups of respective sizes  where 

How many different divisions are possible? To answer this question, we note that

there are  possible choices for the first group; for each choice of the first group,

there are  possible choices for the second group; for each choice of the first

two groups, there are  possible choices for the third group; and so on.

It then follows from the generalized version of the basic counting principle that there

are

𝑥 𝑦
3

0
 𝑥 𝑦

3

1
 𝑥 𝑦

3

2
 𝑥 𝑦

3

3
 𝑥 𝑦

𝑦 3𝑥𝑦 3𝑥 𝑦 𝑥

𝑛

𝑛

𝑘
𝑘,

𝑛

𝑘
1 1 2

2

2 1.

𝑛

𝑟 𝑛 ,𝑛 , . . . ,𝑛 , 𝑛 𝑛.

𝑛

𝑛

𝑛 𝑛

𝑛

𝑛 𝑛 𝑛

𝑛
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possible divisions.

Another way to see this result is to consider the  values 

 where  appears  times, for  Every permutation of these values

corresponds to a division of the  items into the  groups in the following manner: Let

the permutation  correspond to assigning item  to group  item  to

group  and so on. For instance, if  and if  then the

permutation  corresponds to assigning items  to the first

group, items  to the second group, and item  to the third group. Because every

permutation yields a division of the items and every possible division results from

some permutation, it follows that the number of divisions of  items into  distinct

groups of sizes  is the same as the number of permutations of  items of

which  are alike, and  are alike,  and  are alike, which was shown in

Section 1.3  to equal 

Notation

If  we define  by

Thus,  represents the number of possible divisions of  distinct

objects into  distinct groups of respective sizes 

Example 5a

A police department in a small city consists of 10 officers. If the department

policy is to have 5 of the officers patrolling the streets, 2 of the officers working

full time at the station, and 3 of the officers on reserve at the station, how many

different divisions of the 10 officers into the 3 groups are possible?

Solution

𝑛

𝑛

𝑛 𝑛

𝑛
⋯

𝑛 𝑛 𝑛 ⋯ 𝑛

𝑛

𝑛!
𝑛 𝑛 ! 𝑛 !

𝑛 𝑛 !
𝑛 𝑛 𝑛 ! 𝑛 !

⋯
𝑛 𝑛 𝑛 ⋯ 𝑛 !

0! 𝑛 !

𝑛!
𝑛 ! 𝑛 !⋯𝑛 !

𝑛  1,1, . . . ,1,2, . . . ,2, . . . ,

𝑟, . . . ,𝑟, 𝑖 𝑛 𝑖 1, . . . ,𝑟.

𝑛 𝑟

𝑖 ,𝑖 , . . . ,𝑖 1 𝑖 , 2

𝑖 , 𝑛 8 𝑛 4,𝑛 3, and 𝑛 1,

1, 1, 2, 3, 2, 1, 2, 1 1, 2, 6, 8

3, 5, 7 4

𝑛 𝑟

𝑛 ,𝑛 , . . . ,𝑛 𝑛

𝑛 𝑛 . . . , 𝑛

 
𝑛!

𝑛 !𝑛 !⋯𝑛 !
.

𝑛 𝑛 ⋯ 𝑛 𝑛,
𝑛

𝑛 ,𝑛 , . . . ,𝑛

𝑛

𝑛 ,𝑛 , . . . ,𝑛
𝑛!

𝑛 ! 𝑛 !⋯𝑛 !

𝑛

𝑛 ,𝑛 , . . . ,𝑛
𝑛

𝑟 𝑛 ,𝑛 , . . . ,𝑛 .
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There are  possible divisions.

Example 5b

Ten children are to be divided into an  team and a  team of 5 each. The 

team will play in one league and the  team in another. How many different

divisions are possible?

Solution

There are  possible divisions.

Example 5c

In order to play a game of basketball, 10 children at a playground divide

themselves into two teams of 5 each. How many different divisions are possible?

Solution

Note that this example is different from Example 5b  because now the order of

the two teams is irrelevant. That is, there is no  or  team, but just a division

consisting of 2 groups of 5 each. Hence, the desired answer is

The proof of the following theorem, which generalizes the binomial theorem, is left as

an exercise.

The multinomial theorem

That is, the sum is over all nonnegative integer-valued vectors 

such that 

The numbers  are known as multinomial coefficients.

Example 5d

In the first round of a knockout tournament involving  players, the 

10!
5! 2! 3!

2520

𝐴 𝐵 𝐴

𝐵

10!
5! 5!

252

𝐴 𝐵

10!/ 5! 5!
2!

126

                𝑥 𝑥 ⋯ 𝑥

    , .   .   . , :

⋯

  
𝑛

𝑛 ,𝑛 , .   .   . ,𝑛
 𝑥 𝑥 ⋯𝑥  

𝑛 ,𝑛 , . . . ,𝑛

𝑛 𝑛 ⋯ 𝑛 𝑛.
𝑛

𝑛 ,𝑛 , . . . ,𝑛

𝑛 2 𝑛
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players are divided into  pairs, with each of these pairs then playing a game.

The losers of the games are eliminated while the winners go on to the next

round, where the process is repeated until only a single player remains. Suppose

we have a knockout tournament of  players.

a. How many possible outcomes are there for the initial round? (For

instance, one outcome is that 1 beats 2, 3 beats 4, 5 beats 6, and 7 beats

8.)

b. How many outcomes of the tournament are possible, where an outcome

gives complete information for all rounds?

Solution

One way to determine the number of possible outcomes for the initial round is to

first determine the number of possible pairings for that round. To do so, note that

the number of ways to divide the  players into a first pair, a second pair, a third

pair, and a fourth pair is  Thus, the number of possible pairings

when there is no ordering of the  pairs is  For each such pairing, there are

 possible choices from each pair as to the winner of that game, showing that

there are  possible results of round  [Another way to see this is to

note that there are  possible choices of the  winners and, for each such

choice, there are  ways to pair the  winners with the  losers, showing that

there are  possible results for the first round.]

Similarly, for each result of round  there are  possible outcomes of round 

and for each of the outcomes of the first two rounds, there are  possible

outcomes of round  Consequently, by the generalized basic principle of

counting, there are  possible outcomes of the tournament. Indeed,

the same argument can be used to show that a knockout tournament of 

players has  possible outcomes.

Knowing the preceding result, it is not difficult to come up with a more direct

argument by showing that there is a one-to-one correspondence between the set

of possible tournament results and the set of permutations of  To obtain

such a correspondence, rank the players as follows for any tournament result:

Give the tournament winner rank  and give the final-round loser rank  For the

𝑛/2

8

8
8

2,  2,  2,  2

8!
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.

4
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2 4!
.
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2 4!
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1.

8

4
4

4! 4 4
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2!
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8!
4!

4!
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1, . . . ,𝑛.
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two players who lost in the next-to-last round, give rank  to the one who lost to

the player ranked  and give rank  to the one who lost to the player ranked 

For the four players who lost in the second-to-last round, give rank  to the one

who lost to player ranked  rank  to the one who lost to the player ranked 

rank  to the one who lost to the player ranked  and rank  to the one who lost

to the player ranked  Continuing on in this manner gives a rank to each player.

(A more succinct description is to give the winner of the tournament rank  and

let the rank of a player who lost in a round having  matches be  plus the rank

of the player who beat him, for ) In this manner, the result of the

tournament can be represented by a permutation  where  is the

player who was given rank  Because different tournament results give rise to

different permutations, and because there is a tournament result for each

permutation, it follows that there are the same number of possible tournament

results as there are permutations of 

Example 5e

* Asterisks denote material that is optional.

An individual has gone fishing at Lake Ticonderoga, which contains four types of fish:

lake trout, catfish, bass, and bluefish. If we take the result of the fishing trip to be the

numbers of each type of fish caught, let us determine the number of possible

outcomes when a total of  fish are caught. To do so, note that we can denote the

outcome of the fishing trip by the vector  where  is the number of

trout that are caught,  is the number of catfish,  is the number of bass, and  is

the number of bluefish. Thus, the number of possible outcomes when a total of 

fish are caught is the number of nonnegative integer vectors  that sum

to 

3

1 4 2.
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1, 6 2,

7 3, 8

4.

1

2 2

𝑘 0,  . . . , 𝑚 1.

𝑖 ,𝑖 , . . . ,𝑖 , 𝑖
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1, . . . ,𝑛.
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2
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2

0,  0,  2
 𝑥 𝑥 𝑥
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1,  1,  0
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2

1,  0,  1
 𝑥 𝑥 𝑥

2

0,  1,  1
 𝑥 𝑥 𝑥
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𝑥 , 𝑥 ,  𝑥 ,  𝑥 𝑥

𝑥 𝑥 𝑥

10

𝑥 , 𝑥 ,  𝑥 ,  𝑥

10.
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More generally, if we supposed there were  types of fish and that a total of  were

caught, then the number of possible outcomes would be the number of nonnegative

integer-valued vectors  such that

To compute this number, let us start by considering the number of positive integer-

valued vectors  that satisfy the preceding. To determine this number,

suppose that we have  consecutive zeroes lined up in a row:

Note that any selection of  of the  spaces between adjacent zeroes (see

Figure 1.2 ) corresponds to a positive solution of 6.1  by letting  be the

number of zeroes before the first chosen space,  be the number of zeroes between

the first and second chosen space,  and  being the number of zeroes following

the last chosen space.

Figure 1.2 Number of positive solutions.

For instance, if we have  and  then (with the choices represented by dots)

the choice

corresponds to the solution  As positive solutions of (6.1)

correspond, in a one-to-one fashion, to choices of  of the adjacent spaces, it

follows that the number of differerent positive solutions is equal to the number of

different selections of  of the  adjacent spaces. Consequently, we have the

following proposition.

Proposition 6.1

𝑟 𝑛

𝑥 , . . . ,𝑥

𝑥 𝑥 . . . 𝑥 𝑛

(6.1)

𝑥 , . . . ,𝑥

𝑛

0 0 0  . . .  0 0

𝑟 1 𝑛 1

𝑥

𝑥

. . . , 𝑥

𝑛 8 𝑟 3,

0.0 0 0 0.0 0 0

𝑥 1, 𝑥 4, 𝑥 3.

𝑟 1

𝑟 1 𝑛 1
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